報(bào)告服務(wù)熱線400-068-7188

AI大模型終于走到了數(shù)據(jù)爭(zhēng)奪戰(zhàn)

分享到:
20 科技云報(bào)到 ? 2023-09-04 17:40:24  來(lái)源:科技云報(bào)到 E3857G0

1

圖源:攝圖網(wǎng)

作者|科技云報(bào)道 來(lái)源|科技云報(bào)到(ID:ITCloud-BD)

當(dāng)前,大模型正處在產(chǎn)業(yè)落地前期,高質(zhì)量的數(shù)據(jù),是大模型實(shí)現(xiàn)產(chǎn)業(yè)化的關(guān)鍵要素。

最近,一項(xiàng)來(lái)自Epoch AI Research團(tuán)隊(duì)的研究拋出了一個(gè)殘酷的事實(shí):模型還要繼續(xù)做大,數(shù)據(jù)卻不夠用了。

研究人員預(yù)測(cè)了2022年至2100年間可用的圖像和語(yǔ)言數(shù)據(jù)總量,并據(jù)此估計(jì)了未來(lái)大模型訓(xùn)練數(shù)據(jù)集規(guī)模的增長(zhǎng)趨勢(shì)。

結(jié)果表明:高質(zhì)量的語(yǔ)言數(shù)據(jù)存量將在2026年耗盡,低質(zhì)量的語(yǔ)言數(shù)據(jù)和圖像數(shù)據(jù)的存量將分別在2030年至2050年、2030年至2060年枯竭。

這意味著,如果數(shù)據(jù)效率沒(méi)有顯著提高或有新的數(shù)據(jù)源可用,那么到2040年,模型的規(guī)模增長(zhǎng)將放緩。

對(duì)數(shù)據(jù)端的建設(shè)該重視起來(lái)了。

01

 高質(zhì)量數(shù)據(jù)成“搶手貨”

隨著全球新一輪AI熱潮來(lái)臨,大量訓(xùn)練數(shù)據(jù)已成為AI算法模型發(fā)展和演進(jìn)的“燃料”。

從GPT的實(shí)驗(yàn)發(fā)現(xiàn),隨著模型參數(shù)量的增加,模型性能均得到不同程度的提高。

但值得注意的是,通過(guò)來(lái)自人類(lèi)反饋的強(qiáng)化學(xué)習(xí)(RLHF)生成的InstructGPT模型,比100倍參數(shù)規(guī)模無(wú)監(jiān)督的GPT-3模型效果更好,也說(shuō)明了有監(jiān)督的標(biāo)注數(shù)據(jù)是大模型應(yīng)用成功的關(guān)鍵之一。

如果以上預(yù)測(cè)是正確的,那么毫無(wú)疑問(wèn)數(shù)據(jù)將成為做模型繼續(xù)做大的主要制約因素,AI的進(jìn)展也會(huì)隨著數(shù)據(jù)量的耗盡而放緩。

阿里巴巴達(dá)摩院基礎(chǔ)視覺(jué)團(tuán)隊(duì)負(fù)責(zé)人趙德麗博士曾在采訪中表示,數(shù)據(jù)側(cè)的建設(shè)將會(huì)成為每一個(gè)做大模型工作的機(jī)構(gòu)必須要考慮的問(wèn)題,大模型有多少能力,往往取決于有什么樣的數(shù)據(jù)。

據(jù)趙德麗博士介紹,與文生圖大模型相比,做文生視頻大模型要難得多,原因就在于視頻數(shù)據(jù)的數(shù)量遠(yuǎn)比不上文本和圖像,更不要談數(shù)據(jù)的質(zhì)量了。相應(yīng)地,目前已有的文生視頻模型的效果都不盡如人意。

結(jié)合上述研究結(jié)果,如果當(dāng)下的趨勢(shì)繼續(xù)下去,人類(lèi)現(xiàn)有的數(shù)據(jù)庫(kù)存一定會(huì)耗盡,而且高質(zhì)量的數(shù)據(jù)會(huì)更少。

正因如此,一場(chǎng)數(shù)據(jù)爭(zhēng)奪戰(zhàn)正在拉開(kāi)序幕。

目前,Adobe利用其數(shù)以億計(jì)的庫(kù)存照片數(shù)據(jù)庫(kù)構(gòu)建了自己的人工智能工具套件,名為Firefly。自3月份發(fā)布以來(lái),F(xiàn)irefly已被用于創(chuàng)建超過(guò)10億張圖像,而Adobe股價(jià)已因此上漲了36%。

一些初創(chuàng)公司也正在蜂擁至這個(gè)新領(lǐng)域。今年4月,專(zhuān)注于人工智能的數(shù)據(jù)庫(kù)公司W(wǎng)eaviate融資5000萬(wàn)美元,估值達(dá)到2億美元。

僅僅一周后,其競(jìng)爭(zhēng)對(duì)手PineCone就以7.5億美元的估值籌集了1億美元資金。

本月早些時(shí)候,另一家數(shù)據(jù)庫(kù)初創(chuàng)公司Neon也獲得了4600萬(wàn)美元的融資。

在國(guó)內(nèi),百度智能云近期也升級(jí)了大模型數(shù)據(jù)服務(wù)能力,建設(shè)了國(guó)內(nèi)首個(gè)專(zhuān)業(yè)大模型數(shù)據(jù)標(biāo)注基地。百度智能云方面表示,目前已經(jīng)在全國(guó)與各地政府合作,共建了10多個(gè)數(shù)據(jù)標(biāo)注基地。

顯然,對(duì)數(shù)據(jù)的爭(zhēng)奪才剛剛開(kāi)始。

02

數(shù)據(jù)標(biāo)注再次迎來(lái)爆發(fā)

AI大模型帶來(lái)了大量需求,與之相伴的是中國(guó)數(shù)據(jù)標(biāo)注行業(yè)的迅速發(fā)展。

招商證券認(rèn)為,一方面,進(jìn)入大數(shù)據(jù)時(shí)代后,人們各種行為的電子化、網(wǎng)絡(luò)化帶來(lái)海量數(shù)據(jù),但產(chǎn)生的數(shù)據(jù)只有1%能被收集和保存,并且收集的數(shù)據(jù)中90%是非結(jié)構(gòu)化的數(shù)據(jù);另一方面,人工智能的興起帶來(lái)模型訓(xùn)練所用結(jié)構(gòu)化數(shù)據(jù)的巨大需求,數(shù)據(jù)標(biāo)注的重要性逐漸突顯。

有業(yè)內(nèi)人士認(rèn)為,預(yù)計(jì)今年10月國(guó)內(nèi)會(huì)迎來(lái)一波大的類(lèi)chatGPT大模型的數(shù)據(jù)需求,而且這是一個(gè)海量的需求,以目前國(guó)內(nèi)幾家頭部數(shù)據(jù)標(biāo)注公司來(lái)看,目前產(chǎn)能還不足以滿足需求。

艾瑞咨詢數(shù)據(jù)顯示,包括數(shù)據(jù)采集、數(shù)據(jù)處理(標(biāo)注)、數(shù)據(jù)存儲(chǔ)、數(shù)據(jù)挖掘等模塊在內(nèi)的AI基礎(chǔ)數(shù)據(jù)服務(wù)市場(chǎng),將在未來(lái)數(shù)年內(nèi)持續(xù)增長(zhǎng)。

到2025年,國(guó)內(nèi)AI基礎(chǔ)數(shù)據(jù)服務(wù)市場(chǎng)的整體規(guī)模預(yù)計(jì)將達(dá)到101.1億元,整體市場(chǎng)增速將達(dá)到31.8%(2024-2025年)。

據(jù)iResearch數(shù)據(jù),2019年我國(guó)數(shù)據(jù)標(biāo)注市場(chǎng)規(guī)模為30.9億元,預(yù)計(jì)2025年市場(chǎng)規(guī)模突破100億元,年復(fù)合增長(zhǎng)率達(dá)到14.6%。

隨著數(shù)據(jù)量的不斷增長(zhǎng)和數(shù)據(jù)結(jié)構(gòu)的不斷變化,數(shù)據(jù)標(biāo)注行業(yè)涉及的領(lǐng)域也越來(lái)越廣泛,特別是在自動(dòng)駕駛、AIGC等領(lǐng)域內(nèi),數(shù)據(jù)標(biāo)注需求量極大。

作為AI大語(yǔ)言模型高質(zhì)量回答的基礎(chǔ),數(shù)據(jù)標(biāo)注的生產(chǎn)過(guò)程主要包括四個(gè)環(huán)節(jié):設(shè)計(jì)(訓(xùn)練數(shù)據(jù)集結(jié)構(gòu)設(shè)計(jì))、采集(獲取原料數(shù)據(jù))、加工(數(shù)據(jù)標(biāo)注)及質(zhì)檢(各環(huán)節(jié)數(shù)據(jù)質(zhì)量、加工質(zhì)量檢測(cè))。

其中,數(shù)據(jù)標(biāo)注需要識(shí)別圖像、文本、視頻等原始數(shù)據(jù),并添加一個(gè)或多個(gè)標(biāo)簽為機(jī)器學(xué)習(xí)模型指定上下文,幫助其做出準(zhǔn)確的預(yù)測(cè)。

當(dāng)前,大部分?jǐn)?shù)據(jù)標(biāo)注任務(wù)仍然需要人工完成,而且各種數(shù)據(jù)類(lèi)型和應(yīng)用領(lǐng)域都需要相應(yīng)領(lǐng)域的專(zhuān)業(yè)標(biāo)注員來(lái)完成標(biāo)注任務(wù)。

隨著技術(shù)的發(fā)展,數(shù)據(jù)標(biāo)準(zhǔn)行業(yè)正在成為半人工智能、半人工化的行業(yè)。

面對(duì)大語(yǔ)言模型動(dòng)輒上百億參數(shù)的數(shù)據(jù)質(zhì)量控制,需要通過(guò)標(biāo)注平臺(tái)將一個(gè)個(gè)復(fù)雜RLHF需求拆成很多個(gè)簡(jiǎn)單的工作流,讓機(jī)器去做預(yù)處理,人去做深層的基于理解的反饋,以減少人在簡(jiǎn)單問(wèn)題上的精力消耗,專(zhuān)注在專(zhuān)業(yè)問(wèn)題上的標(biāo)注。

業(yè)內(nèi)一般采用主動(dòng)質(zhì)檢加被動(dòng)質(zhì)檢的方式,前者靠人為去做質(zhì)檢,后者是靠算法去做一些預(yù)識(shí)別。

但目前數(shù)據(jù)標(biāo)注工具的準(zhǔn)確率部分僅百分之幾,部分準(zhǔn)確率則可以達(dá)到80%、90%。機(jī)器標(biāo)注的識(shí)別率越高,人工需求就會(huì)越少,成本、利潤(rùn)、速度、質(zhì)量都能更加可控。

隨著技術(shù)不斷發(fā)展,未來(lái)數(shù)據(jù)標(biāo)注行業(yè)可能會(huì)實(shí)現(xiàn)更高的自動(dòng)化程度,不過(guò)應(yīng)用領(lǐng)域不同,仍然需要一定數(shù)量的標(biāo)注人員來(lái)進(jìn)行標(biāo)注任務(wù)。

03

傳統(tǒng)數(shù)據(jù)標(biāo)注亟待升級(jí)

值得注意的是,在如今火爆的大模型訓(xùn)練浪潮中,傳統(tǒng)的數(shù)據(jù)標(biāo)注需求,很可能是下降的。

讓ChatGPT更具有“人味”的關(guān)鍵——強(qiáng)人工反饋RLHF,帶來(lái)的是另一種更高要求的數(shù)據(jù)標(biāo)注需求。

相關(guān)分析顯示,在RLHF環(huán)節(jié),模型首先在大數(shù)據(jù)集上進(jìn)行預(yù)訓(xùn)練,再與專(zhuān)業(yè)的人工智能訓(xùn)練師進(jìn)行交互,專(zhuān)業(yè)的標(biāo)注人員會(huì)對(duì)ChatGPT生成的回答進(jìn)行標(biāo)注、評(píng)估和反饋,給出一個(gè)針對(duì)回答的分?jǐn)?shù)或者標(biāo)簽。

這些標(biāo)注數(shù)據(jù)可以作為強(qiáng)化學(xué)習(xí)過(guò)程中的“獎(jiǎng)勵(lì)函數(shù)”來(lái)指導(dǎo)ChatGPT的參數(shù)調(diào)整,最終幫助模型進(jìn)行強(qiáng)化學(xué)習(xí)和不斷優(yōu)化。

也就是說(shuō),讓ChatGPT“更具人味兒”的精妙之處很可能就在于——它可以利用人工標(biāo)注的反饋結(jié)果不斷優(yōu)化自身模型,實(shí)現(xiàn)更合乎人類(lèi)思維邏輯的表達(dá)。

但傳統(tǒng)數(shù)據(jù)標(biāo)注模式很難滿足RLHF的需求。

在過(guò)去,數(shù)據(jù)標(biāo)注公司的主流商業(yè)模式以銷(xiāo)售工具系統(tǒng)和標(biāo)注服務(wù)為主。一方面,缺少自有數(shù)據(jù)很少有出售精準(zhǔn)數(shù)據(jù)集的服務(wù)。另一方面,人才升級(jí)作為一個(gè)系統(tǒng)工程,對(duì)數(shù)據(jù)標(biāo)注公司的考驗(yàn)更高。

在完成這一步后,RLHF訓(xùn)練還涉及到不少事實(shí)判斷和價(jià)值判斷。其中,價(jià)值判斷涉及到公認(rèn)的"公序良俗",理論上是更容易拉齊AI認(rèn)知的部分,事實(shí)判斷則涉及各行業(yè)Know-How。

這往往需要行業(yè)專(zhuān)業(yè)人士出手,不是傳統(tǒng)數(shù)據(jù)標(biāo)注員,簡(jiǎn)單針對(duì)詞性、圖片細(xì)節(jié)進(jìn)行標(biāo)注就能實(shí)現(xiàn)的。

也就是說(shuō),要跟上新一代AI浪潮,數(shù)據(jù)標(biāo)注公司不僅需要在數(shù)據(jù)層面進(jìn)行升級(jí),人才的更新?lián)Q代同樣重要。

目前的確已有標(biāo)注公司開(kāi)始在內(nèi)部撰寫(xiě)《人員提升教程》,他們將在接下來(lái)重點(diǎn)培訓(xùn)標(biāo)注人員對(duì)“升級(jí)后”的標(biāo)注需求理解,以及回答方式的合規(guī)性等。

但是,在專(zhuān)業(yè)壁壘非常高的醫(yī)療等領(lǐng)域,數(shù)據(jù)標(biāo)注仍面臨著人才困境。

某數(shù)據(jù)標(biāo)注公司運(yùn)營(yíng)負(fù)責(zé)人曾表示,“特別是醫(yī)療,有些是普通人經(jīng)過(guò)培訓(xùn)可以標(biāo)的,有的必須要醫(yī)療從業(yè)者,這背后的人才招聘難度可想而知。”

但即便困難重重,也不意味著數(shù)據(jù)標(biāo)注公司會(huì)立馬進(jìn)行一波洗牌——至少,在大模型訓(xùn)練的幾個(gè)階段內(nèi),初始階段的半監(jiān)督學(xué)習(xí)同樣對(duì)傳統(tǒng)數(shù)據(jù)標(biāo)注存在需求。

面對(duì)大模型和RLHF的機(jī)遇,重現(xiàn)大規(guī)模投入似乎在所難免。

有業(yè)內(nèi)人士認(rèn)為,如果數(shù)據(jù)標(biāo)注公司期望在垂直領(lǐng)域做更高層級(jí)的數(shù)據(jù)服務(wù),可能要成立一個(gè)全新的產(chǎn)品線。甚至,具備AI研發(fā)背景的創(chuàng)始人會(huì)是更合適的數(shù)據(jù)標(biāo)注創(chuàng)業(yè)者。

面對(duì)新一代AI浪潮,沒(méi)有人可以躺著掙錢(qián)——這是每一次技術(shù)迭代沖擊背后,暗中標(biāo)注好的“價(jià)格”。

編者按:本文轉(zhuǎn)載自微信公眾號(hào):科技云報(bào)到(ID:ITCloud-BD),作者:科技云報(bào)道 

本文來(lái)源科技云報(bào)到,內(nèi)容僅代表作者本人觀點(diǎn),不代表前瞻網(wǎng)的立場(chǎng)。本站只提供參考并不構(gòu)成任何投資及應(yīng)用建議。(若存在內(nèi)容、版權(quán)或其它問(wèn)題,請(qǐng)聯(lián)系:service@qianzhan.com) 品牌合作與廣告投放請(qǐng)聯(lián)系:0755-33015062 或 hezuo@qianzhan.com

p32 q0 我要投稿

分享:

品牌、內(nèi)容合作請(qǐng)點(diǎn)這里:尋求合作 ››

前瞻經(jīng)濟(jì)學(xué)人

專(zhuān)注于中國(guó)各行業(yè)市場(chǎng)分析、未來(lái)發(fā)展趨勢(shì)等。掃一掃立即關(guān)注。

前瞻產(chǎn)業(yè)研究院

中國(guó)產(chǎn)業(yè)咨詢領(lǐng)導(dǎo)者,專(zhuān)業(yè)提供產(chǎn)業(yè)規(guī)劃、產(chǎn)業(yè)申報(bào)、產(chǎn)業(yè)升級(jí)轉(zhuǎn)型、產(chǎn)業(yè)園區(qū)規(guī)劃、可行性報(bào)告等領(lǐng)域解決方案,掃一掃關(guān)注。

前瞻數(shù)據(jù)庫(kù)
企查貓
前瞻經(jīng)濟(jì)學(xué)人App二維碼

掃一掃下載APP

與資深行業(yè)研究員/經(jīng)濟(jì)學(xué)家互動(dòng)交流讓您成為更懂趨勢(shì)的人

研究員周關(guān)注榜

企查貓(企業(yè)查詢寶)App
×

掃一掃
下載《前瞻經(jīng)濟(jì)學(xué)人》APP提問(wèn)

 
在線咨詢
×
在線咨詢

項(xiàng)目熱線 0755-33015070

AAPP
前瞻經(jīng)濟(jì)學(xué)人APP下載二維碼

下載前瞻經(jīng)濟(jì)學(xué)人APP

關(guān)注我們
前瞻產(chǎn)業(yè)研究院微信號(hào)

掃一掃關(guān)注我們

我要投稿

×
J